AQUACARE 8440 FLOOR CLEAN CONCENTRATE # Polycure - A division of Era Polymers Pty Ltd Version No: 1.3 Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements #### Chemwatch Hazard Alert Code: 2 Issue Date: 10/09/2024 Print Date: 10/09/2024 S.GHS.AUS.EN ### SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product name | AQUACARE 8440 FLOOR CLEAN CONCENTRATE | | |---------------------------------|---|--| | Synonyms | Not Available | | | Other means of identification | AQUACARE 8440 FLOOR CLEAN CONCENTRATE | | | Relevant identified uses of the | substance or mixture and uses advised against | | | | Powerful detergent used for cleaning Polycure's range of floor coatings | | | Registered company name | Polycure - A division of Era Polymers Pty Ltd | | |-------------------------|---|--| | Address | 2-4 Green Street, Banksmeadow, 2019, NSW, Australia | | | Telephone | +612 9666 3888 | | | Fax | +612 9666 4805 | | | Website | www.polycure.com.au | | | Email | erapol@erapol.com.au | | ### **Emergency telephone number** | Association / Organisation | CHEMWATCH EMERGENCY RESPONSE (24/7) | |-----------------------------------|-------------------------------------| | Emergency telephone numbers | +61 1800 951 288 | | Other emergency telephone numbers | +61 3 9573 3188 | # **SECTION 2 Hazards identification** #### Classification of the substance or mixture HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. | Poisons Schedule | Not Applicable | | |--------------------|---|--| | Classification [1] | kin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2A | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | # Label elements Hazard pictogram(s) Signal word Warning # Hazard statement(s) | H315 | Causes skin irritation. | |------|--------------------------------| | H319 | Causes serious eye irritation. | # Precautionary statement(s) General | P101 | If medical advice is needed, have product container or label at hand. | |------|---| | P102 | Keep out of reach of children. | | P103 | Read carefully and follow all instructions. | Version No: **1.3** Page **2** of **11** Issue Date: **10/09/2024** ### **AQUACARE 8440 FLOOR CLEAN CONCENTRATE** Print Date: 10/09/2024 #### Precautionary statement(s) Prevention | • ` ` ` | | |---------|--| | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | P264 | Wash all exposed external body areas thoroughly after handling. | | | | ### Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | |----------------|--|--| | P337+P313 | P337+P313 If eye irritation persists: Get medical advice/attention. | | | P302+P352 | 12+P352 IF ON SKIN: Wash with plenty of water. | | | P332+P313 | P332+P313 If skin irritation occurs: Get medical advice/attention. | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | #### Precautionary statement(s) Storage Not Applicable #### Precautionary statement(s) Disposal Not Applicable ### **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |---------------|---|--------------------------------------| | 9004-82-4 | <10 | sodium lauryl ether sulfate | | 8000-48-4 | <5 | eucalyptus oil | | Not Available | to 100 | All other substances - non-hazardous | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | ### **SECTION 4 First aid measures** ### Description of first aid measures | Eye Contact | If this product comes in contact with eyes: Vash out immediately with water. If irritation continues, seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | |--------------|--|--| | Skin Contact | If skin contact occurs: ▶ Immediately remove all contaminated clothing, including footwear. ▶ Flush skin and hair with running water (and soap if available). ▶ Seek medical attention in event of irritation. | | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. | | ## Indication of any immediate medical attention and special treatment needed Treat symptomatically. # **SECTION 5 Firefighting measures** ### **Extinguishing media** - Water spray or fog. - ▶ Foam. - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide. #### Special hazards arising from the substrate or mixture | Fire Incompatibility | ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | | | |-------------------------|---|--|--| | Advice for firefighters | | | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. | | | | Fire/Explosion Hazard | ► Combustible. | | | Version No: **1.3** Page **3** of **11** Issue Date: **10/09/2024** #### **AQUACARE 8440 FLOOR CLEAN CONCENTRATE** Print Date: 10/09/2024 - Slight fire hazard when exposed to heat or flame. - Heating may cause expansion or decomposition leading to violent rupture of containers. - On combustion, may emit toxic fumes of carbon monoxide (CO). - May emit acrid smoke. - Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. May emit corrosive fumes HAZCHEM Not Applicable #### **SECTION 6 Accidental release measures** ### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 ### Methods and material for containment and cleaning up #### Remove all ignition sources Clean up all spills immediately Avoid breathing vapours and contact with skin and eyes. Minor Spills Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. **Major Spills** Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite ▶ Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** #### Precautions for safe handling Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke Safe
handling Keep containers securely sealed when not in use Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions ▶ DO NOT allow clothing wet with material to stay in contact with skin Consider storage under inert gas. ▶ Store in original containers Keep containers securely sealed. No smoking, naked lights or ignition sources Other information Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. #### Conditions for safe storage, including any incompatibilities | Suitable container | Metal can or drum Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. | |-------------------------|---| | Storage incompatibility | Terpenoids and terpenes, are generally unsaturated, are thermolabile, are often volatile and may be easily oxidised or hydrolysed depending on their respective structure. Terpenoids are subject to autoxidation. Autoxidation is any oxidation that occurs in open air or in presence of oxygen (and sometimes UV radiation) and forms peroxides and hydroperoxides. | Version No: **1.3** Page **4** of **11** Issue Date: **10/09/2024** #### **AQUACARE 8440 FLOOR CLEAN CONCENTRATE** Print Date: 10/09/2024 Though autoxidation has been particularly investigated in the field of fatty oils, it also plays a most crucial part for terpenoid deterioration. Although virtually all types of organic materials can undergo air oxidation, certain types are particularly prone to autoxidation, including unsaturated compounds that have allylic or benzylic hydrogen atoms (C6H5CH2-); these materials are converted to hydroperoxides by autoxidation. Promoted by heat, catalytic quantities of redox-reactive metals, and exposure to light, autoxidation may result in the formation of explosive peroxides which may become explosive upon concentration. As a rule, however, primary autoxidation products such as hydroperoxides eventually break down during advanced stages of oxidation depending on their individual stability. Thereby they give rise to a range of stable oxidised secondary products such as mono- to polyvalent alcohols, aldehydes, ketones, epoxides, peroxides, or acids as well as highly viscous, often oxygen-bearing polymers. Light, heat, or increasing acidity often promote this breakdown. Compounds rich in allylic hydrogen atoms (2HC=CHCH2-R), found in most terpenoids, make up the most probable targets for autoxidation. Several terpenoids (typically oxygen containing derivatives) are saturated and do not react in a similar fashion to their unsaturated congeners. Thermolabile terpenoids, especially mere terpenes and aldehydes, are susceptible to rearrangement processes at elevated temperatures. Terpenic conversion reactions, upon heating, have been reported both for isolated compounds as well as for essential oils. (which tend to be rich in mono-, and sesqui-terpenes. Mono-, bi-, or tricyclic mono- terpenoids (those containing two isoprene units, dienes) and sesquiterpenoids (with three isoprene units, trienes) of different chemical classes, such as hydrocarbons, ketones, alcohols, oxides, aldehydes, phenols, or esters, make up the major part in essential oils. Electron-donating groups and increasing alkyl substitution contribute to a stronger carbon-peroxide bond through a hyperconjugative effect, thus leading to more stable and subsequently built-up hydroperoxides. Some oxygen-bearing terpenoids such as menthol, eucalyptol (1,8-cineol), and menthone do not form hydroperoxides upon oxidation but are directly converted into ketones, acids, and aldehydes. None of these are unsaturated compounds. Due to their low volatility, diterpenes (with four isoprenes, tetraenes) are barely encountered in genuine essential oils obtained by distillation, while tri- and higher terpenoids such as sterols or carotenoids are only present in the nonvolatile fractions such as plant resins or gums and will remain in the residue Aging processes generally come along with a more or less pronounced quality loss In addition to the frequent development of unpleasant and often pungent flavours, shifting colors such as the formation of a yellow staining or changes in consistency up to resinification have been reported both upon degradation of single terpenoids as well as of essential oils. - The interaction of alkenes and alkynes with nitrogen oxides and oxygen may produce explosive addition products; these may form at very low temperatures and explode on heating to higher temperatures (the addition products from 1,3-butadiene and cyclopentadiene form rapidly at -150 C and ignite or explode on warming to -35 to -15 C). These derivatives ('pseudo- nitrosites') were formerly used to characterise terpene hydrocarbons. - Exposure to air must be kept to a minimum so as to limit the build-up of peroxides which will concentrate in bottoms if the product is distilled. The product must not be distilled to dryness if the peroxide concentration is substantially above 10 ppm (as active oxygen) since explosive decomposition may occur. Distillate must be immediately inhibited to prevent peroxide formation. The effectiveness of the antioxidant is limited once the peroxide levels exceed 10 ppm as active oxygen. Addition of more inhibitor at this point is generally ineffective. Prior to distillation it is recommended that the product should be washed with aqueous ferrous ammonium sulfate to destroy peroxides; the washed product should be immediately re-inhibited. - A range of exothermic decomposition energies for double bonds is given as 40-90 kJ/mol. The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment. For example, in 'open vessel processes' (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in 'closed vessel processes' (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g. BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition - · The reaction of ozone with alkenes is believed to proceed *via* the formation of a vibrationally excited Primary Ozonide (POZ) which falls apart to give a vibrationally excited Criegee Intermediate (CI) The CI can decompose to give OH radicals, or be stabilised. This may be of relevance in atmospheric chemistry. - Violent explosions at low temperatures in ammonia synthesis gas units have been traced to the addition products of dienes and nitrogen dioxide TFFL-3 Avoid reaction with oxidising agents # SECTION 8 Exposure controls / personal protection TEEL-1 # Control parameters Occupational Exposure Limits (OEL) #### INGREDIENT DATA Not Available Ingredient #### Emergency Limits | AQUACARE 8440 FLOOR
CLEAN CONCENTRATE | Not Available | Not Available | | Not Available | |--|---------------|---------------|---------------|---------------| | Ingredient | Original IDLH | | Revised IDLH | | | sodium lauryl ether sulfate | Not Available | | Not Available | | | eucalyptus oil | Not Available | | Not Available | | TFFI -2 #### Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |-----------------------------|--|----------------------------------| | sodium lauryl ether sulfate | E | ≤ 0.01 mg/m³ | | eucalyptus oil | E | ≤ 0.1 ppm | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | #### **Exposure controls** # Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the
particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Version No: 1.3 Page 5 of 11 Issue Date: 10/09/2024 #### **AQUACARE 8440 FLOOR CLEAN CONCENTRATE** Print Date: 10/09/2024 General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |---|----------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air) | 0.25-0.5 m/s (50-
100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-
200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-
500 f/min) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s (500-
2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |---|------------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood - local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Individual protection measures, such as personal protective equipment # Eye and face protection #### Safety glasses with side shields - Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. #### Skin protection #### See Hand protection below #### Hands/feet protection - Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term · Contaminated gloves should be replaced. Statistical gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min · Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Version No: **1.3** Page **6** of **11** Issue Date: **10/09/2024** #### **AQUACARE 8440 FLOOR CLEAN CONCENTRATE** Print Date: 10/09/2024 | | Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. | |------------------|---| | Body protection | See Other protection below | | Other protection | Overalls. PV.C apron. Barrier cream. Skin cleansing cream. Eye wash unit. | #### Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face Respirator | Full-Face Respirator | |------------------------------------|--|----------------------|----------------------| | up to 10 | 1000 | A-AUS / Class1 P2 | - | | up to 50 | 1000 | - | A-AUS / Class 1 P2 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | A-2 P2 | | up to 100 | 10000 | - | A-3 P2 | | 100+ | | | Airline** | ^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity.
Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used ### **SECTION 9 Physical and chemical properties** | nformation on basic physical and chemical properties | | | | |--|--------------------|--|---------------| | Appearance | Clear green liquid | | | | Physical state | Liquid | Relative density (Water = 1) | 1.01 | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | 9.1 | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Available | | Flash point (°C) | >93 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (1%) | 7.1 | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | | Heat of Combustion (kJ/g) | Not Available | Ignition Distance (cm) | Not Available | | Flame Height (cm) | Not Available | Flame Duration (s) | Not Available | | Enclosed Space Ignition
Time Equivalent (s/m3) | Not Available | Enclosed Space Ignition
Deflagration Density (g/m3) | Not Available | ### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |--------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. | Version No: 1.3 Page 7 of 11 Issue Date: 10/09/2024 **AQUACARE 8440 FLOOR CLEAN CONCENTRATE** Hazardous polymerisation will not occur. Possibility of hazardous See section 7 reactions Conditions to avoid See section 7 See section 7 Incompatible materials Hazardous decomposition See section 5 #### **SECTION 11 Toxicological information** products | Information |
vicala | امماد | ~ff~~t~ | |-------------|------------|-------|---------| | | | | | | Information on toxicological ef | fects | | | |---------------------------------|---|------------|--| | Inhaled | The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. | | | | Ingestion | The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. | | | | Skin Contact | This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Anionic surfactants can cause skin redness and pain, as well as a rash. Cracking, scaling and blistering can occur. | | | | Еуе | Although the liquid is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn). Direct eye contact with some anionic surfactants in high concentration can cause severe damage to the cornea. Low concentrations can cause discomfort, excess blood flow, and corneal clouding and swelling. Recovery may take several days. | | | | Chronic | Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. A number of common flavor and fragrance chemicals can form peroxides surprisingly fast in air. Antioxidants can in most cases minimize the oxidation. Fragrance terpenes are easily oxidized in air. Non-oxidised forms are very weak sensitizers; however, after oxidation, the hyproperoxides are strong sensitisers which may cause allergic reactions. Autooxidation of fragrance terpenes contributes greatly to fragrance allergy. There is the need to test for compounds the patients are actually exposed to, not only the ingredients originally applied in commercial formulations. Peroxidisable terpenes and terpenoids should only be used when the level of peroxides is kept to the lowest practicable level, for instance by adding antioxidants at the time of production. This should be less than 10 millimoles of peroxide per litre. This is because peroxides may have sensitizing properties. | | | | AQUACARE 8440 FLOOR | TOXICITY | IRRITATION | | | AQUACARE 8440 FLOOR | |---------------------| | CLEAN CONCENTRATE | | | | TOXICITY | IRRITATION | |---------------|---------------| | Not Available | Not Available | # sodium lauryl ether sulfate | TOXICITY | IRRITATION | |--|------------------------------------| | Oral (Rat) LD50: 1600 mg/kg ^[2] | Skin (rabbit):25 mg/24 hr moderate | # eucalyptus oil | TOXICITY | IRRITATION | |---|---| | Dermal (rabbit) LD50: 2480 mg/kg ^[2] | Eye: adverse effect observed (irritating) ^[1] | | Oral (Rat) LD50: 2480 mg/kg ^[2] | Eye: no adverse effect observed (not irritating) ^[1] | | | Skin (rabbit): 500 mg/24h - mod | | | Skin: adverse effect observed (irritating) ^[1] | # Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances ### **AQUACARE 8440 FLOOR CLEAN CONCENTRATE** Fragrance allergens act as haptens, low molecular weight chemicals that cause an immune response only when attached to a carrier protein. However, not all sensitizing fragrance chemicals are directly reactive, but require previous activation. A prehapten is a chemical that itself causes little or no sensitization, but is transformed into a hapten in the skin (bioactivation), usually via enzyme catalysis. It is not always possible to know whether a particular allergen that is not directly reactive acts as a prehapten or a prohapten , or both. Prohaptens: Compounds that are bioactivated in the skin and thereby form haptens are referred to prohaptens. The possibility of a prohapten being activated cannot be avoided by outside measures. Activation processes increase the risk for cross-reactivity between fragrance substances. Various enzymes play roles in both activating and deactivating prohaptens. Skin-sensitizing prohaptens can be recognized and grouped into chemical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or studies of sensitization. QSAR prediction: Prediction of sensitization activity of these substances is complex, especially for those substances that can act both as pre- and prohaptens # **SODIUM LAURYL ETHER** SULFATE [CESIO] No significant acute toxicological data identified in literature search. Polyethers (such as ethoxylated surfactants and polyethylene glycols) are highly susceptible to being oxidized in the air. They then form complex mixtures of oxidation products. Animal testing reveals that whole the pure, non-oxidised surfactant is non-sensitizing, many of the oxidation products are sensitisers. The oxidization products also cause irritation. Alcohol ethoxysulfates (AES) are of low acute toxicity. Neat AES are irritant to the skin and eyes. The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce coniunctivitis Print Date:
10/09/2024 Version No: **1.3** Page **8** of **11** Issue Date: **10/09/2024** #### **AQUACARE 8440 FLOOR CLEAN CONCENTRATE** Print Date: 10/09/2024 #### **EUCALYPTUS OIL** The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. The terpenoid hydrocarbons are found in needle trees and deciduous plants. This category of chemicals shows very low acute toxicity. They are ecreted in the urine. They are unlikely to cause genetic damage, but animal testing shows that they do cause increased rates of kidney cancer. They have low potential to cause reproductive and developmental toxicity. Fragrance allergens act as haptens, which are small molecules that cause an immune reaction only when attached to a carrier protein. However, not all sensitizing fragrance chemicals are directly reactive, but some require previous activation. A prehapten is a chemical that itself causes little or no sensitization, but it is transformed into a hapten outside the skin by a chemical reaction (oxidation in air or reaction with light) without the requirement of an enzyme. For prehaptens, it is possible to prevent activation outside the body to a certain extent by different measures, for example, prevention of air exposure during handling and storage of the ingredients and the final product, and by the addition of suitable antioxidants. When antioxidants are used, care should be taken that they will not be activated themselves, and thereby form new sensitisers. Prehaptens: Most terpenes with oxidisable allylic positions can be expected to self-oxidise on air exposure. Depending on the stability of the oxidation products that are formed, the oxidized products will have differing levels of sensitization potential. Tests shows that air exposure of lavender oil increased the potential for sensitization. Prohaptens: Compounds that are bioactivated in the skin and thereby form haptens are referred to prohaptens. The possibility of a prohapten being activated cannot be avoided by outside measures. Activation processes increase the risk for cross-reactivity between fragrance substances. Various enzymes play roles in both activating and deactivating prohaptens. Skin-sensitizing prohaptens can be recognized and grouped into chemical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or studies of sensitization. QSAR prediction: Prediction of sensitization activity of these substances is complex, especially for those substances that can act both as pre- and prohaptens. Adverse reactions to fragrances in perfumes and fragranced cosmetic products include allergic contact dermatitis, irritant contact dermatitis, sensitivity to light, immediate contact reactions, and pigmented contact dermatitis. Airborne and connubial contact dermatitis occurs. Contact allergy is a lifelong condition, so symptoms may occur on re-exposure. Allergic contact dermatitis can be severe and widespread, with significant impairment of quality of life and potential consequences for fitness for work. If the perfume contains a sensitizing component, intolerance to perfumes by inhalation may occur. Symptoms may include general unwellness, coughing, phlegm, wheezing, chest tightness, headache, shortness of breath with exertion, acute respiratory illness, hayfever, asthma and other respiratory diseases. Perfumes can induce excess reactivity of the airway without producing allergy or airway obstruction. Breathing through a carbon filter mask had no protective effect. Occupational asthma caused by perfume substances, such as isoamyl acetate, limonene, cinnamaldehyde and benzaldehyde, tend to give persistent symptoms, even though the exposure is below occupational exposure limits. Prevention of contact sensitization to fragrances is an important objective of public health risk management. Hands: Contact sensitization may be the primary cause of hand eczema or a complication of irritant or atopic hand eczema. However hand eczema is a disease involving many factors, and the clinical significance of fragrance contact allergy in severe, chronic hand eczema may not be clear. #### AQUACARE 8440 FLOOR CLEAN CONCENTRATE & EUCALYPTUS OIL Underarm: Skin inflammation of the armpits may be caused by perfume in deodorants and, if the reaction is severe, it may spread down the arms and to other areas of the body. In individuals who consulted a skin specialist, a history of such first-time symptoms was significantly related to the later diagnosis of perfume allergy. Face: An important manifestation of fragrance allergy from the use of cosmetic products is eczema of the face. In men, after-shave products can cause eczema around the beard area and the adjacent part of the neck. Men using wet shaving as opposed to dry have been shown to have an increased risk of allergic to fragrances. Irritant reactions: Some individual fragrance ingredients, such as citral, are known to be irritant. Fragrances may cause a dose-related contact urticaria (hives) which is not allergic; cinnamal, cinnamic alcohol and Myroxylon pereirae are known to cause hives, but others, including menthol, vanillin and benzaldehyde have also been reported. Pigmentary anomalies: Type IV allergy is responsible for "pigmented cosmetic dermatitis", referring to increased pigmentation on the face and neck. Testing showed a number of fragrance ingredients were associated, including jasmine absolute, ylang-ylang oil, cananga oil, benzyl salicylate, hydroxycitronellal, sandalwood oil, geraniol and geranium oil. Light reactions: Musk ambrette produced a number of allergic reactions mediated by light and was later banned from use in Europe. Furocoumarins (psoralens) in some plant-derived fragrances have caused phototoxic reactions, with redness. There are now limits for the amount of furocoumarins in fragrances. Phototoxic reactions still occur, but are rare. General/respiratory: Fragrances are volatile, and therefore, in addition to skin exposure, a perfume also exposes the eyes and the nose / airway. It is estimated that 2-4% of the adult population is affected by respiratory or eye symptoms by such an exposure. It is known that exposure to fragrances may exacerbate pre-existing asthma. Asthma-like symptoms can be provoked by sensory mechanisms. A significant association was found between respiratory complaints related to fragrances and contact allergy to fragrance ingredients and hand eczema. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | X − Data either not available or does not fill the criteria for classification ✓ − Data available to make classification Version No: **1.3** Page **9** of **11** Issue Date: **10/09/2024** #### AQUACARE 8440 FLOOR CLEAN CONCENTRATE Print Date: 10/09/2024 # **SECTION 12 Ecological information** #### **Toxicity** | AQUACARE 8440 FLOOR | Endpoint | | Test Duration (hr) |) | Species | Value | • | Source | | |----------------------------|------------------------------|-------------------|---------------------|----------------|---|---------------|--|--------|-------------| | CLEAN CONCENTRATE | Not Available | | Not Available Not | | Not Available Not Av | | Available Not Availab | | ilable | | | Endpoint | | Test Duration (h | ır) | Species | Va | lue | | Source | | odium lauryl ether sulfate | EC50 48h | | | Crustacea | | 2.43-4.01mg/l | | 4 | | | | NOEC(ECx) | | 48h | | Fish | 0.2 | 0.26mg/L | | 5 | | eucalyptus oil | Endpoint EC50 EC50(ECx) EC50 | 48h Crus 48h Crus | | | Crustacea
Crustacea Algae or other aquatic plants | | Value 127.25-163.21mg/l 127.25-163.21mg/l >1.6mg/l | | 4
4
2 | | | EC50 | 48h | | Crustacea | 1 | | 0.307mg/l | | 2 | | | EC50 | 96h | | Algae or ot | Algae or other aquatic plants | | >74mg/l | | 2 | | | EC50(ECx) | 96h | | Fish | Fish | | 0.179mg/L | | 2 | | | LC50 | 96h | | Fish | | | 0.28mg/L | | 2 | | Legend: | | - Aquatic | Toxicity Data 5. EC | ETOC Aquatic H | tered Substances - E
azard Assessment D | | | | | For Terpenes such as Limonene and Isoprene: Atmospheric Fate: Contribute to aerosol and photochemical smog formation. When terpenes are introduced to the atmosphere, may either decrease ozone concentrations when oxides of nitrogen are low or, if emissions take place in polluted air (i.e. containing high concentrations of nitrogen oxides), leads to an increase in ozone concentrations. Lower terpenoids can react with unstable reactive gases and may act as precursors of photochemical smog therefore indirectly influencing community and ecosystem properties. The reactions of ozone with larger unsaturated compounds, such as the terpenes can give rise to oxygenated species with low vapour pressures that subsequently condense to form secondary organic aerosol. Aquatic Fate: Complex chlorinated terpenes such as toxaphene (a persistent, mobile and toxic insecticide) and its degradation products were produced by photoinitiated reactions in an aqueous system, initially containing limonene and other monoterpenes, simulating pulp bleach conditions. For Surfactants: Kow cannot be easily determined due to hydrophilic/hydrophobic properties of the molecules in surfactants. BCF value: 1-350. Aquatic Fate: Surfactants tend to accumulate at the interface of the air with water and are not extracted into one or the other liquid phases Terrestrial Fate: Anionic surfactants are not appreciably sorbed by inorganic solids. Cationic surfactants are strongly sorbed by solids, particularly clays. Significant sorption of anionic and non-ionic surfactants has been observed in activated sludge and organic river sediments. Surfactants have been shown to improve water infiltration into soils with moderate to severe hydrophobic or water-repellent properties. Ecotoxicity: Some surfactants are known to be toxic to animals, ecosystems and humans, and can increase the diffusion of other environmental contaminants. The acute aquatic toxicity generally is considered to be related to the effects of the surfactant properties on the organism and not to direct chemical toxicity. Surfactants should be considered to be toxic to aquatic species under conditions that allow contact of the chemicals with the organisms. Surfactants are expected to transfer slowly from water into the flesh of fish. During this process, readily biodegradable surfactants are expected to be metabolized rapidly during the process of bioaccumulation. Surfactants are not to be considered to show bioaccumulation potential if they are readily biodegradable. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | # Bioaccumulative potential | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | | | | #### Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | # **SECTION 13 Disposal considerations** ### Waste treatment methods # Product / Packaging disposal Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. - A Hierarchy of Controls seems to be common the user should investigate: Reduction - Reuse - ▶ Recycling - ▶ Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. Version No: **1.3** Page **10** of **11** Issue Date: **10/09/2024** #### **AQUACARE 8440 FLOOR CLEAN CONCENTRATE** Print Date: 10/09/2024 - ▶ Recycle wherever possible or consult manufacturer for recycling options. - ▶ Consult State Land Waste Authority for disposal. - ▶ Bury or incinerate residue at an approved site. - ▶ Recycle containers if possible, or dispose of in an authorised landfill. # **SECTION 14 Transport information** #### **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--|---------------| | sodium lauryl ether sulfate | Not Available | | eucalyptus oil | Not Available | | All other substances - non-
hazardous | Not Available | #### 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |--|---------------| | sodium lauryl ether sulfate | Not Available | | eucalyptus oil | Not Available | | All other substances - non-
hazardous | Not Available | #### **SECTION 15 Regulatory information** ## Safety, health and environmental regulations / legislation specific for the substance or mixture ## sodium lauryl ether sulfate is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) #### eucalyptus oil is found on the following regulatory lists Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australian Inventory of Industrial Chemicals (AIIC) ### **Additional Regulatory Information** Not Applicable # National Inventory Status | ivational inventory Status | | |---|--| | National Inventory | Status | | Australia - AIIC / Australia Non-
Industrial Use | Yes | | Canada - DSL | Yes | | China - IECSC | Yes | | Europe - EINEC / ELINCS /
NLP | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | #### **SECTION 16 Other information** | Revision Date | 10/09/2024 | |---------------|------------| Version No: 1.3 Page 11 of 11 Issue Date: 10/09/2024 #### **AQUACARE 8440 FLOOR CLEAN CONCENTRATE** Print Date: 10/09/2024 10/09/2024 **Initial Date** SDS Version Summary | Version | Date of Update | Sections Updated | |---------|----------------|---| | 0.3 | 10/09/2024 | Hazards identification - Classification, Composition / information on ingredients - Ingredients | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** - PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - ▶ IARC: International Agency for Research on Cancer - ▶ ACGIH: American Conference of Governmental Industrial Hygienists - ▶ STEL: Short Term Exposure Limit - ▶ TEEL: Temporary Emergency Exposure Limit₀ - IDLH: Immediately Dangerous to Life or Health Concentrations - ES: Exposure Standard - OSF: Odour Safety Factor - ▶ NOAEL: No Observed Adverse Effect Level - ▶ LOAEL: Lowest Observed Adverse Effect Level - ▶ TLV: Threshold Limit Value - LOD: Limit Of Detection - OTV: Odour Threshold Value - ▶ BCF: BioConcentration Factors - ▶ BEI: Biological Exposure Index - DNEL: Derived No-Effect Level - PNEC: Predicted no-effect concentration - ▶ AllC: Australian Inventory of Industrial Chemicals - ▶ DSL: Domestic Substances List - ▶ NDSL: Non-Domestic Substances List - ▶ IECSC: Inventory of Existing Chemical Substance in China - ► EINECS: European INventory of Existing Commercial chemical Substances - ELINCS:
European List of Notified Chemical Substances - ▶ NLP: No-Longer Polymers - ▶ ENCS: Existing and New Chemical Substances Inventory - KECI: Korea Existing Chemicals Inventory - ▶ NZIoC: New Zealand Inventory of Chemicals - ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances - ► TSCA: Toxic Substances Control Act - ▶ TCSI: Taiwan Chemical Substance Inventory - ▶ INSQ: Inventario Nacional de Sustancias Químicas - NCI: National Chemical Inventory - ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances