

POLYCURE 3920 HIGH GRIP ADDITIVE

Polycure - A division of Era Polymers Pty Ltd

Version No: 1.1

Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements

Chemwatch Hazard Alert Code: 4

Issue Date: **10/12/2024**Print Date: **10/12/2024**S.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier					
Product name	POLYCURE 3920 HIGH GRIP ADDITIVE				
Synonyms	ot Available				
Proper shipping name	PAINT RELATED MATERIAL (including paint thinning or reducing compound)				
Other means of identification	POLYCURE 3920 HIGH GRIP ADDITIVE				
Relevant identified uses of the	substance or mixture and uses advised against				
Relevant identified uses	An additive to increase the surface grip of Polycure floor coatings				
Details of the manufacturer or	supplier of the safety data sheet				
Registered company name	Polycure - A division of Era Polymers Pty Ltd				
Address	2-4 Green Street, Banksmeadow, 2019, NSW, Australia				
Telephone	+612 9666 3888				
Fax	+612 9666 4805				
	1012 3000 4003				
Website	www.polycure.com.au				

Emergency telephone number

Association / Organisation	EMWATCH EMERGENCY RESPONSE (24/7)	
Emergency telephone number(s)	+61 1800 951 288	
Other emergency telephone number(s)	+61 3 9573 3188	

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

 ${\it HAZARDOUS\ CHEMICAL.\ DANGEROUS\ GOODS.\ According\ to\ the\ WHS\ Regulations\ and\ the\ ADG\ Code.}$

Poisons Schedule	S5
Classification ^[1]	Flammable Liquids Category 3, Aspiration Hazard Category 1, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Specific Target Organ Toxicity - Repeated Exposure Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word

Dange

Hazard statement(s)

Issue Date: 10/12/2024 Version No: 1.1 Page 2 of 14

POLYCURE 3920 HIGH GRIP ADDITIVE

Print Date: 10/12/2024

H226	Flammable liquid and vapour.	
H304	May be fatal if swallowed and enters airways.	
H315	Causes skin irritation.	
H319	Causes serious eye irritation.	
H335	May cause respiratory irritation.	
H373	May cause damage to organs through prolonged or repeated exposure.	
H412	Harmful to aquatic life with long lasting effects.	
Precautionary statement(s) General		

P101	If medical advice is needed, have product container or label at hand.
P102	Keep out of reach of children.
P103	Read carefully and follow all instructions.

Precautionary statement(s) Prevention

P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P260	Do not breathe mist/vapours/spray.
P271	Use only a well-ventilated area.
P240	Ground and bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use non-sparking tools.
P243	Take action to prevent static discharges.
P273	Avoid release to the environment.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P264	Wash all exposed external body areas thoroughly after handling.

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.					
P331	Do NOT induce vomiting.					
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.					
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.					
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.					
P337+P313	If eye irritation persists: Get medical advice/attention.					
P302+P352	IF ON SKIN: Wash with plenty of water.					
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].					
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.					
P332+P313	If skin irritation occurs: Get medical advice/attention.					
P362+P364	Take off contaminated clothing and wash it before reuse.					

Precautionary statement(s) Storage

•	
P403+P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight] Name				
108-65-6	30-50	-50 <u>propylene glycol monomethyl ether acetate, alpha-isomer</u>			
1330-20-7	30-50	0-50 <u>xylene</u>			
Not Available	to 100	to 100 All other substances - non-hazardous			
Legend:	end: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available				

SECTION 4 First aid measures

Description of first aid measures

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water. **Eye Contact**
 - ▶ Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Seek medical attention without delay; if pain persists or recurs seek medical attention.
 - ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Version No: 1.1 Page 3 of 14 Issue Date: 10/12/2024

POLYCURE 3920 HIGH GRIP ADDITIVE

Print Date: 10/12/2024

Skin Contact

Inhalation

If skin or hair contact occurs:

- Quickly but gently, wipe material off skin with a dry, clean cloth
- Immediately remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre.
- Transport to hospital, or doctor.
- If fumes or combustion products are inhaled remove from contaminated area.
 - Lay patient down. Keep warm and rested.
 - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
 - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
 - ► Transport to hospital, or doctor, without delay.
 - ▶ IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
 - ▶ For advice, contact a Poisons Information Centre or a doctor.
 - Urgent hospital treatment is likely to be needed.
 - In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
 - If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist.
 - If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS.

Ingestion

Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:

INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (headdown position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

- If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of
- Avoid giving milk or oils
- Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. for simple esters:

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema
- Monitor and treat, where necessary, for shock.
 DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consult a toxicologist as necessary

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For acute or short term repeated exposures to xylene:

- Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- Pulmonary absorption is rapid with about 60-65% retained at rest.
- Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant Methylhippu-ric acids in urine Index 1.5 gm/gm creatinine 2 mg/min

Sampling Time End of shift Last 4 hrs of shift Comments

SECTION 5 Firefighting measures

Extinguishing media

Alcohol stable foam

Version No: 1.1 Page 4 of 14 Issue Date: 10/12/2024

POLYCURE 3920 HIGH GRIP ADDITIVE

Print Date: 10/12/2024

- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	 Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material.

HAZCHEM •3Y

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect residues in a flammable waste container.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse /absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers.

The tendency of many ethers to form explosive peroxides is well documented. Ethers lacking non-methyl hydrogen atoms adjacent to the ether link are thought to be relatively safe

- DO NOT concentrate by evaporation, or evaporate extracts to dryness, as residues may contain explosive peroxides with DETONATION potential.
- Any static discharge is also a source of hazard.
- ▶ Before any distillation process remove trace peroxides by shaking with excess 5% aqueous ferrous sulfate solution or by percolation through a column of activated alumina.
- Distillation results in uninhibited ether distillate with considerably increased hazard because of risk of peroxide formation on storage.
- Add inhibitor to any distillate as required.
- When solvents have been freed from peroxides by percolation through columns of activated alumina, the absorbed peroxides must promptly be desorbed by treatment with polar solvents such as methanol or water, which should then be disposed of safely.

Version No: 1.1 Page 5 of 14 Issue Date: 10/12/2024

POLYCURE 3920 HIGH GRIP ADDITIVE

Print Date: 10/12/2024

The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example.

Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised.

- A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxides or disposed of before this date.
- The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the container should add an opening date.
- ▶ Unopened containers received from the supplier should be safe to store for 18 months.
- Opened containers should not be stored for more than 12 months
- · Electrostatic discharge may be generated during pumping this may result in fire.
- · Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec).
- Avoid splash filling.
- · Do NOT use compressed air for filling discharging or handling operations.
- \cdot Wait 2 minutes after tank filling (for tanks such as those on
- · road tanker vehicles) before opening hatches or manholes.
- · Wait 30 minutes after tank filling (for large storage tanks)
- · before opening hatches or manholes. Even with proper
- · grounding and bonding, this material can still accumulate an
- electrostatic charge. If sufficient charge is allowed to
- · accumulate, electrostatic discharge and ignition of flammable · air-vapour mixtures can occur. Be aware of handling
- · operations that may give rise to additional hazards that result
- · from the accumulation of static charges. These include but are
- · not limited to pumping (especially turbulent flow), mixing,
- $\boldsymbol{\cdot}$ filtering, splash filling, cleaning and filling of tanks and
- containers, sampling, switch loading, gauging, vacuum truck
 operations, and mechanical movements. These activities may
- · lead to static discharge e.g. spark formation. Restrict line
- · velocity during pumping in order to avoid generation of
- electrostatic discharge (= 1 m/s until fill pipe submerged to
 twice its diameter, then = 7 m/s). Avoid splash filling.
- · Do NOT use compressed air for filling, discharging, or handling operations
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid generation of static electricity.
- DO NOT use plastic buckets
- ▶ Earth all lines and equipment.
- Use spark-free tools when handling.
- Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke
- Keep containers securely sealed when not in use
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Use good occupational work practice
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin
- ▶ Store in original containers in approved flammable liquid storage area. ▶ Store away from incompatible materials in a cool, dry, well-ventilated area
- DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- No smoking, naked lights, heat or ignition sources.
- Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access.
- Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances.
- Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers - dry chemical, foam or carbon dioxide) and Other information
 - flammable gas detectors.
 - Keep adsorbents for leaks and spills readily available.
 - Protect containers against physical damage and check regularly for leaks.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

In addition, for tank storages (where appropriate):

- Store in grounded, properly designed and approved vessels and away from incompatible materials.
- For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up.
- Storage tanks should be above ground and diked to hold entire contents

Conditions for safe storage, including any incompatibilities

- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
 Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility

Suitable container

Xylenes

- may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride
- attack some plastics, rubber and coatings

Version No: 1.1 Page 6 of 14 Issue Date: 10/12/2024

POLYCURE 3920 HIGH GRIP ADDITIVE

Print Date: 10/12/2024

- may generate electrostatic charges on flow or agitation due to low conductivity.
- Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds.

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

- Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.
- Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily.
- ▶ Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- Microwave conditions give improved yields of the oxidation products
- Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical

Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007

- Esters react with acids to liberate heat along with alcohols and acids.
- Strong oxidising acids may cause a vigorous reaction with esters that is sufficiently exothermic to ignite the reaction products.
- Heat is also generated by the interaction of esters with caustic solutions.
 Flammable hydrogen is generated by mixing esters with alkali metals and hydrides.
- Esters may be incompatible with aliphatic amines and nitrates.
- Figure 1 Glycol ethers may form peroxides under certain conditions; the potential for peroxide formation is enhanced when these substances are used in processes such as distillation where they are concentrated or even evaporated to near-dryness or dryness; storage under a nitrogen atmosphere is recommended to minimise the possible formation of highly reactive peroxides
- Nitrogen blanketing is recommended if transported in containers at temperatures within 15 deg C of the flash-point and at or above the flash-point - large containers may first need to be purged and inerted with nitrogen prior to loading
- In the presence of strong bases or the salts of strong bases, at elevated temperatures, the potential exists for runaway reactions.
- Contact with aluminium should be avoided; release of hydrogen gas may result- glycol ethers will corrode scratched aluminium surfaces.
- May discolour in mild steel/ copper; lined containers, glass or stainless steel is preferred
- Figure Glycols and their ethers undergo violent decomposition in contact with 70% perchloric acid. This seems likely to involve formation of the glycol perchlorate esters (after scission of ethers) which are explosive, those of ethylene glycol and 3-chloro-1,2-propanediol being more powerful than glyceryl nitrate, and the former so sensitive that it explodes on addition of water. Investigation of the hazards associated with use of 2-butoxyethanol for alloy electropolishing showed that mixtures with 50-95% of acid at 20 deg C, or 40-90% at 75 C, were explosive and initiable by sparks. Sparking caused mixtures with 40-50% of acid to become explosive, but 30% solutions appeared safe under static conditions of temperature and concentration.

SECTION 8 Exposure controls / personal protection

900 ppm

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	propylene glycol monomethyl ether acetate, alpha-isomer	1-Methoxy-2-propanol acetate	50 ppm / 274 mg/m3	548 mg/m3 / 100 ppm	Not Available	Not Available
Australia Exposure Standards	xylene	Xylene (o-, m-, p- isomers)	80 ppm / 350 mg/m3	655 mg/m3 / 150 ppm	Not Available	Not Available
Ingredient	Original IDLH		Revised IDLH			
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available		Not Available			

Exposure controls

xylene

Appropriate engineering controls

CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear

Not Available

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Version No: 1.1 Page 7 of 14 Issue Date: 10/12/2024

POLYCURE 3920 HIGH GRIP ADDITIVE

Print Date: 10/12/2024

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

- · Adequate ventilation is typically taken to be that which limits the average concentration to no more than 25% of the LEL within the building, room or enclosure containing the dangerous substance.
- · Ventilation for plant and machinery is normally considered adequate if it limits the average concentration of any dangerous substance that might potentially be present to no more than 25% of the LEL. However, an increase up to a maximum 50% LEL can be acceptable where additional safeguards are provided to prevent the formation of a hazardous explosive atmosphere. For example, gas detectors linked to emergency shutdown of the process might be used together with maintaining or increasing the exhaust ventilation on solvent evaporating ovens and gas turbine enclosures.
- · Temporary exhaust ventilation systems may be provided for non-routine higher-risk activities, such as cleaning, repair or maintenance in tanks or other confined spaces or in an emergency after a release. The work procedures for such activities should be carefully considered.. The atmosphere should be continuously monitored to ensure that ventilation is adequate and the area remains safe. Where workers will enter the space, the ventilation should ensure that the concentration of the dangerous substance does not exceed 10% of the LEL (irrespective of the provision of suitable breathing apparatus)

Individual protection measures, such as personal protective equipment

Eye and face protection

- Safety glasses with side shields
- Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document. describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

Skin protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

For esters:

▶ Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term

· Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:
- Excellent when breakthrough time > 480 min

- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

See Other protection below

Other protection

Hands/feet protection

- Overalls PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit
- Ensure there is ready access to a safety shower.

Version No: 1.1 Page 8 of 14 Issue Date: 10/12/2024

POLYCURE 3920 HIGH GRIP ADDITIVE

Print Date: 10/12/2024

- ▶ Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

Forsberg Clothing Performance Index'.

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

POLYCURE 3920 HIGH GRIP ADDITIVE

Material	СРІ
PE/EVAL/PE	A
PVA	A
TEFLON	A
VITON	A
BUTYL	С
BUTYL/NEOPRENE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PVC	С
PVDC/PE/PVDC	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Ansell Glove Selection

Glove — In order of recommendation
AlphaTec® 15-554
AlphaTec® 38-612
AlphaTec® Solvex® 37-675
AlphaTec® Solvex® 37-185
AlphaTec® 58-008
AlphaTec® 58-530B
AlphaTec® 58-530W
AlphaTec® 79-700
AlphaTec® 53-001
AlphaTec® 58-005

The suggested gloves for use should be confirmed with the glove supplier.

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 5 x ES	A-AUS / Class 1 P2	-	A-PAPR-AUS / Class 1 P2
up to 25 x ES	Air-line*	A-2 P2	A-PAPR-2 P2
up to 50 x ES	-	A-3 P2	-
50+ x ES	-	Air-line**	-

^ - Full-face

 $A(All \ classes) = Organic \ vapours, \ B \ AUS \ or \ B1 = Acid \ gasses, \ B2 = Acid \ gas \ or \ hydrogen \ cyanide(HCN), \ E = Sulfur \ dioxide(SO2), \ G = Agricultural \ chemicals, \ K = Ammonia(NH3), \ Hg = Mercury, \ NO = Oxides \ of \ nitrogen, \ MB = Methyl \ bromide, \ AX = Low \ boiling \ point \ organic \ compounds(below \ 65 \ degC)$

- ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

	• •		
Appearance	White, opaque viscous liquid		
Physical state	Liquid	Relative density (Water = 1)	0.86-0.95
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	>245
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available

 Version No: 1.1
 Page 9 of 14
 Issue Date: 10/12/2024

 Print Date: 10/12/2024
 Print Date: 10/12/2024

POLYCURE 3920 HIGH GRIP ADDITIVE

Initial boiling point and boiling range (°C)	142	Molecular weight (g/mol)	Not Available
Flash point (°C)	37	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available
Upper Explosive Limit (%)	7	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.5	Volatile Component (%vol)	57-70
Vapour pressure (kPa)	0.7	Gas group	Not Available
Solubility in water	Partly miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	4.2	VOC g/L	533-590
Heat of Combustion (kJ/g)	Not Available	Ignition Distance (cm)	Not Available
Flame Height (cm)	Not Available	Flame Duration (s)	Not Available
Enclosed Space Ignition Time Equivalent (s/m3)	Not Available	Enclosed Space Ignition Deflagration Density (g/m3)	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

TOXICITY

Not Available

POLYCURE 3920 HIGH GRIP ADDITIVE

nformation on toxicological ef	fects
Inhaled	The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. There is strong evidence to suggest that this material can cause, if inhaled once, serious, irreversible damage of organs. The main effects of simple esters are irritation, stupor and insensibility. Headache, drowsiness, dizziness, coma and behavioural changes may occur. Inhalation hazard is increased at higher temperatures. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination. Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers. Xylene is a central nervous system depressant Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful.
Ingestion	Strong evidence exists that exposure to the material may cause irreversible damage (other than cancer, mutations and birth defects) following a single exposure by swallowing. Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733) The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. Accidental ingestion of the material may be damaging to the health of the individual. Not a likely route of entry into the body in commercial or industrial environments. The liquid may produce considerable gastrointestinal discomfort and be harmful or toxic if swallowed.
Skin Contact	There is strong evidence to suggest that this material, on a single contact with skin, can cause serious, irreversible damage of organs. The material may accentuate any pre-existing dermatitis condition Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Skin contact with the material may be harmful; systemic effects may result following absorption. The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering.
Eye	The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Corneal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated. There is evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Severe inflammation may be expected with pain.
Chronic	Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Ample evidence exists from experimentation that reduced human fertility is directly caused by exposure to the material. Some glycol esters and their ethers cause wasting of the testicles, reproductive changes, infertility and changes to kidney function. Shorter chain compounds are more dangerous. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity. Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS]

IRRITATION

Not Available

Version No: **1.1** Page **10** of **14** Issue Date: **10/12/2024**

POLYCURE 3920 HIGH GRIP ADDITIVE

Print Date: 10/12/2024

	TOXICITY	IRR	ITATION		
propylene glycol monomethyl ether acetate,	dermal (rat) LD50: >2000 mg/kg ^[1] Eye: no adverse effect obs		no adverse effect obser	ved (not irritating)[1]	
alpha-isomer	Oral (Rat) LD50: 3739 mg/kg ^[2] Skin: no adverse effect ob				
	TOXICITY IRRITATION				
	Dermal (rabbit) LD50: >1700 mg/kg ^[2]		Eye (Human): 200ppm		
			Eye (Rodent - rabbit): 5	ma/24H Sovere	
	Inhalation (Rat) LC50: 5000 ppm4h ^[2]				
xylene	Oral (Mouse) LD50; 2119 mg/kg ^[2]		Eye (Rodent - rabbit): 8		
хуюне	Eye: adverse effect				
			Skin (Rodent - rabbit): 5		
			Skin (Rodent - rat): 60u		
			Skin: adverse effect obs		
			OKIII. adverse ellect ob.	Served (Initiality)	
Legend:	Value obtained from Europe ECHA Registered specified data extracted from RTECS - Register of the			otained from manufacturer's SDS. Unless otherwise	
POLYCURE 3920 HIGH GRIP ADDITIVE	of persistent asthma-like symptoms within minute include a reversible airflow pattern on lung functio and the lack of minimal lymphocytic inflammation,	syndrome (RAI dude the abser is to hours of a on tests, moder without eosing and duration of lue to high con-	OS) which can occur after of previous airways of documented exposure that to severe bronchial hophilia. RADS (or asthmate fexposure to the irritating support of irritating support of the irritations of irritating support of	r exposure to high levels of highly irritating lisease in a non-atopic individual, with sudden onset to the irritant. Other criteria for diagnosis of RADS hyperreactivity on methacholine challenge testing, a) following an irritating inhalation is an infrequent g substance. On the other hand, industrial bronchitisubstance (often particles) and is completely	
PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA-ISOMER	A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] *Shin-Etsu SDS				
XYLENE	Reproductive effector in rats The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing.				
POLYCURE 3920 HIGH GRIP ADDITIVE & PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA- ISOMER	For propylene glycol ethers (PGEs): Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA) and tripropylene glycol methyl ether (TPM). Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on the reproductive organs, the developing embryo and foetus, blood or thymus gland, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces and alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acid. The predominant alpha isomer of all the PGEs (which is thermodynamically favoured during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid is not entrast, beta-isomers are able to form the alkoxypropionic acids and these are linked to birth defects (and possibly, haemolytic effects). The alpha isomer comprises more than 95% of the isomeric mixture in the commercial product, and therefore PGEs show relatively little toxicity. One of the main metabolites of the propylene glycol etherics is propylene glycol, which is of low toxicity and completely metabolized in the body. As a class, PGEs have low acute toxicity via swallowing, skin exposure and inhalation. PnB and TPM are moderately irritating to the eyes, in animal testing, while the remaining members of this category caused little or no eye irritation. None caused skin sensitization. Animal testing showed that repeat dosing caused few adverse effects. Animal testing also shows that PGEs do not cause skin effects or reproductive toxicity. Commercially available PGEs have not been				
Acute Toxicity	×		Carcinogenicity	×	
Skin Irritation/Corrosion	~		Reproductivity	×	
Serious Eye	~	STO	OT - Single Exposure	✓	
Damage/Irritation					

Version No: **1.1** Page **11** of **14** Issue Date: **10/12/2024**

POLYCURE 3920 HIGH GRIP ADDITIVE

Print Date: 10/12/2024

Respiratory or Skin sensitisation

Mutagenicity

X

STOT - Repeated Exposure

Aspiration Hazard

Legend:

SECTION 12 Ecological information

Toxicity

LYCURE 3920 HIGH GRIP	Endpoint	Test Duration (hr)	{	Species	Value	;	Source
ADDITIVE	Not Available	Not Available	1	Not Available	Not Availab	ole I	Not Available
	Endpoint	Test Duration (hr)	Species	3		Value	Source
	EC50	96h	Algae o	r other aquatic plant	s	>1000mg/l	2
propylene glycol monomethyl ether acetate,	EC50	72h	Algae o	r other aquatic plant	s	>1000mg/l	2
alpha-isomer	NOEC(ECx)	336h	Fish			47.5mg/l	2
	EC50	48h	Crustacea		373mg/l	2	
	LC50	96h	Fish			100-180mg/	1 2
	Endpoint	Test Duration (hr)	Spec	ies		Value	Source
	EC50	72h	Algae	or other aquatic pla	ants	4.6mg/l	2
xylene	NOEC(ECx)	73h	73h Algae or other aquatic plants		Algae or other aquatic plants		/I 2
	EC50	48h	48h Crustacea		1.8mg/l	2	
	LC50	96h	Fish			2.6mg/l	2
		UCLID Toxicity Data 2. Europe					

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For Propylene Glycol Ethers: log Kow's range from 0.309 for TPM to 1.523 for DPnB. Calculated BCFs range from 1.47 for DPnB to 3.16 for DPMA and TPM, indicating low bioaccumulation. Henry's Law Constants are low for all category members, ranging from 5.7 x 10-9 atm-m3/mole for TPM to 2.7 x10-9 atm-m3/mole for PnB. Environmental Fate: Most are liquids at room temperature and all are water-soluble.

Atmospheric Fate: In air, the half-life due to direct reactions with photochemically generated hydroxyl radicals, range from 2.0 hours for TPM to 4.6 hours for PnB. Aquatic/Terrestrial Fate: Most propylene glycol ethers are likely to partition roughly equally into the soil and water compartments in the environment with small to negligible amounts remaining in other environmental compartments (air, sediment, and aquatic biota). In water, most members of this family are 'readily biodegradable' under aerobic conditions. In soil, biodegradation is rapid for PM and PMA.

Ecotoxicity: Propylene glycol ethers are unlikely to persist in the environment. Acute aquatic toxicity testing indicates low toxicity for both ethers and acetates. For Aromatic Substances Series:

Environmental Fate: Large, molecularly complex polycyclic aromatic hydrocarbons, or PAHs, are persistent in the environment longer than smaller PAHs.

Atmospheric Fate: PAHs are 'semi-volatile substances' which can move between the atmosphere and the Earth's surface in repeated, temperature-driven cycles of deposition and volatilization. Terrestrial Fate: BTEX compounds have the potential to move through soil and contaminate ground water, and their vapors are highly flammable and explosive. Ecotoxicity - Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. The order of most toxic to least in a study using grass shrimp and brown shrimp was dimethylnaphthalenes > methylnaphthalenes > naphthalenes. Anthrcene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Biological resources in strong sunlight are at more risk than those that are not. PAHs in general are more frequently associated with chronic risks. For Xylenes:

log Koc : 2.05-3.08; Koc : 25.4-204; Half-life (hr) air : 0.24-42; Half-life (hr) H2O surface water : 24-672; Half-life (hr) H2O ground : 336-8640; Half-life (hr) soil : 52-672; Henry's Pa m3 /mol : 637-879; Henry's atm m3 /mol - 7.68E-03; BOD 5 if unstated - 1.4,1%; COD - 2.56,13% ThOD - 3.125 : BCF : 23; log BCF : 1.17-2.41.

Environmental Fate: Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. Soil - Xylenes are expected to have moderate mobility in soil evaporating rapidly from soil surfaces. The extent of the degradation is expected to depend on its concentration, residence time in the soil, and whether resident microbial populations have been acclimated. Xylene can remain below the soil surface for several days and may travel through the soil profile and enter groundwater. Soil and water microbes may transform it into other, less harmful compounds, although this happens slowly. It is not clear how long xylene remains trapped deep underground in soil or groundwater, but it may be months or years.

Atmospheric Fate: Xylene evaporates quickly into the air from surface soil and water and can remain in the air for several days until it is broken down by sunlight into other less harmful chemicals. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylene may contribute to photochemical smog formation. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethyl-p-benzoquinone, 2,4-dimethylphenol, 6-nitro-2,4-dimethylphenol, 2,6-dimethylphenol, and 4-nitro-2,6-dimethylphenol.

Aquatic Fate: p-xylene may adsorb to suspended solids and sediment in water and is expected to volatilise from water surfaces. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. Measurements taken from goldfish, eels and clams indicate that bioconcentration in aquatic organisms is low. Photooxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. p-Xylene is biodegradable and has been observed to degrade in pond water however; it is unclear if it degrades in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high. Ecotoxicity: Xylenes are slightly toxic to fathead minnow, rainbow trout and bluegill and not acutely toxic to water fleas. For Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/L. and Gammarus lacustris LC50 (48 h): 0.6 mg/L.
For Glycol Ethers:

Environmental Fate: Several glycol ethers have been shown to biodegrade however; biodegradation slows as molecular weight increases. No glycol ethers that have been tested demonstrate marked resistance to biodegradative processes. No glycol ethers that have been tested demonstrate marked resistance to biodegradative processes. Atmospheric Fate: Upon release to the atmosphere by evaporation, high boiling glycol ethers are estimated to undergo photo-degradation (atmospheric half lives = 2.4-2.5 hr). Aquatic Fate: In water, glycol ethers undergo biodegradation (typically 47-92% after 8-21 days) and have a low potential for bioaccumulation (log Kow ranges from -1.73 to +0.51).

Ecotoxicity: Tri- and tetra ethylene glycol ethers are 'practically non-toxic' to aquatic species. No major differences are observed in the order of toxicity going from the methyl- to the butyl ethers. Glycols exert a high oxygen demand for decomposition and once released to the environment death of aquatic organisms occurs if dissolved oxygen is depleted.

DO NOT discharge into sewer or waterways.

Version No: 1.1 Page 12 of 14 Issue Date: 10/12/2024

POLYCURE 3920 HIGH GRIP ADDITIVE

Ingredient	Persistence: Water/Soil	Persistence: Air
propylene glycol monomethyl ether acetate, alpha-isomer	LOW	LOW
xvlene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)

Bioaccumulative potential

Ingredient	Bioaccumulation
propylene glycol monomethyl ether acetate, alpha-isomer	LOW (LogKOW = 0.56)
xylene	MEDIUM (BCF = 740)

Mobility in soil

Ingredient	Mobility
propylene glycol monomethyl ether acetate, alpha-isomer	HIGH (Log KOC = 1.838)

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- Reuse
- Recyclina
- Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

M	lari	ne	Pol	llut	ant

NO

HAZCHEM

•3Y

Land transport (ADG)

14.1. UN number or ID number	1263	1263	
14.2. UN proper shipping name	PAINT RELATED MATERIAL (including paint thinning or reducing compound)		
14.3. Transport hazard class(es)	Class Subsidiary Hazard	3 Not Applicable	
14.4. Packing group			
14.5. Environmental hazard	Not Applicable		
14.6. Special precautions for user	Special provisions Limited quantity	163 223 367 5 L	

Air transport (ICAO-IATA / DGR)

14.1. UN number	1263	
14.2. UN proper shipping	Paint related material (including paint thinning or reducing compounds)	
name		

Print Date: 10/12/2024

Version No: 1.1 Page 13 of 14 Issue Date: 10/12/2024

POLYCURE 3920 HIGH GRIP ADDITIVE

Print Date: 10/12/2024

14.3. Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subsidiary Hazard ERG Code	3 Not Applicable 3L	
14.4. Packing group	III	JL .	
14.5. Environmental hazard	Not Applicable		
	Special provisions Cargo Only Packing Instructions		A3 A72 A192 366
440 0	Cargo Only Maximum Qty / Pack	220 L	
14.6. Special precautions for user	Passenger and Cargo Packing In	355	
	Passenger and Cargo Maximum	60 L	
	Passenger and Cargo Limited Qu	Y344	
	Passenger and Cargo Limited Ma	aximum Qty / Pack	10 L

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	1263	1263		
14.2. UN proper shipping name	PAINT RELATED MAT	PAINT RELATED MATERIAL (including paint thinning or reducing compound)		
14.3. Transport hazard class(es)	IMDG Class IMDG Subsidiary Ha	3 izard Not Applicable		
14.4. Packing group				
14.5 Environmental hazard	Not Applicable			
14.6. Special precautions for user	EMS Number Special provisions Limited Quantities	F-E , S-E 163 223 367 955 5 L		

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available
xylene	Not Available
All other substances - non- hazardous	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available
xylene	Not Available
All other substances - non- hazardous	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

propylene glycol monomethyl ether acetate, alpha-isomer is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

xylene is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 $\,$

 $\label{eq:australia} \textbf{Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6}$

Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic

Additional Regulatory Information

Not Applicable

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non- Industrial Use	Yes

Version No: 1.1 Page 14 of 14 Issue Date: 10/12/2024

POLYCURE 3920 HIGH GRIP ADDITIVE

Print Date: 10/12/2024

National Inventory	Status
Canada - DSL	Yes
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	All chemical substances in this product have been designated as TSCA Inventory 'Active'
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	10/12/2024
Initial Date	10/12/2024

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- ▶ IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- STEL: Short Term Exposure Limit
- ► TEEL: Temporary Emergency Exposure Limit。
- ▶ IDLH: Immediately Dangerous to Life or Health Concentrations
- ▶ ES: Exposure Standard
- OSF: Odour Safety Factor
- NOAEL: No Observed Adverse Effect Level
- LOAEL: Lowest Observed Adverse Effect Level
- TLV: Threshold Limit Value
- LOD: Limit Of Detection
- OTV: Odour Threshold Value ▶ BCF: BioConcentration Factors
- BEI: Biological Exposure Index ▶ DNEL: Derived No-Effect Level
- PNEC: Predicted no-effect concentration
- MARPOL: International Convention for the Prevention of Pollution from Ships
- IMSBC: International Maritime Solid Bulk Cargoes Code
- IGC: International Gas Carrier Code
- ▶ IBC: International Bulk Chemical Code
- AIIC: Australian Inventory of Industrial Chemicals
- DSL: Domestic Substances List
- NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- ▶ EINECS: European INventory of Existing Commercial chemical Substances
- ▶ ELINCS: European List of Notified Chemical Substances
- NLP: No-Longer Polymers
- ► ENCS: Existing and New Chemical Substances Inventory
- ▶ KECI: Korea Existing Chemicals Inventory
- NZIoC: New Zealand Inventory of Chemicals
- ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances
- ▶ TSCA: Toxic Substances Control Act
- TCSI: Taiwan Chemical Substance Inventory
- INSQ: Inventario Nacional de Sustancias Químicas
- NCI: National Chemical Inventory
- FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances